

We are going through the biggest transformation in mobility of people and goods since the advent of automobile.

Accelerated green transition, automation, data and digitalization based services and vehicle platformization are changing the transport sector

Driver Trend

Emission regulation Business feasibility Energy resilience

1

Accelerated green transition for all modes of transport

Efficiency, safety New business models

Vehicle automation & C-ITS technologies enter deployment phase

Data & digitalization TCO of private car City land use

New services in people and goods mobility

R&D efficiency Software

Automotive platforms decrease barrier of entry to EV vehicle manufacturing

Trend #1: Accelerated green transition for all modes of transport

Need for sustainable, resilient, self-sufficient and secure supply of energy for transport.

Passenger cars will go gradually electric, pace depending on EV cost, availability and charging coverage development.

- Heavy duty vehicles, commercial vehicles and non-road mobile machinery will have a mix of electrification, hybrid, hydrogen, biomethane, bio and e-fuel based energy solutions. Cost, availability and distribution the key challenges
- Maritime transformation based on renewable fuels (hydrogen, ammonia, biomethane). Drop-in solutions important.
- Light electric aviation will disrupt short-haul air travel during the next 10-15 years

Trend #2: Automation and C-ITS enter deployment phase

- Remote control and autonomous operations deployed first in restricted environments: agriculture, ports, logistics, industrial
- L3+ level automated driving gradually introduced in passenger cars - need for AD algorithms and sensing for arctic climate conditions.
- Robotaxi public transport driven by cities. Light rail associated feeder traffic automation an important use case.
- Automated urban delivery robots trialed extensively.
- Maritime automation driven by increased navigation safety and energy efficiency and ship design optimization. Retrofit digitalization solutions needed due to long lifecycle of vessels.

Trend #3: New services in people and goods mobility

- Increasing TCO of private car expected to revive multi-modal MaaS, ride-hailing and vehicle sharing services in urban environments after COVID-19 slowdown. Integration of mobility and other digital services into 'Beyond MaaS' services will increase in importance.
- Transport and traffic data sharing, common data models, APIs and cyber security essential for new services creation.
- Micromobility increasingly attracts people in urban environment, driven by e-bike boom, but dependent on biking lanes availability.
- Automated drones entering transport systems for inspection, surveillance and critical material delivery purposes.
- eVTOL Air taxis will open up new mobility era. Need to address low altitude air traffic management and coexistence of drones and other aircrafts, regulatory issues and public acceptance.

Trend #4: Automotive platforms decrease barrier of entry to EV vehicle manufacturing

 Automotive cloud platforms, in-vehicle software platforms, and E/E "skateboard" platforms enable companies without automotive legacy to create electric vehicles fast and economically

- Increased competition as also new players entering automotive, (Sony, Huawei, Xiaomi, Foxconn, Apple,..) – and even startups (TOGG, Volta Trucks, Rivian, NIO, Arrival,..) can realistically develop new electric vehicles and speed up innovation.
- OTA software updates and automotive "app stores" will enable new features introduction throughout the vehicle lifecycle
- The traditional OEM-Tier(s) value chain less valid

The green & digital transformation opens up new business opportunities in Finland and globally

Transport revolution opens up doors for Finland

- Electrification and hydrogen transport value chain
 - Green energy, minerals, materials, batteries, fuel cells, charging equipment, components, electric powertrain & engines
- Smart and automated transport
 - Sophisticated software with sensors, LiDARs, radars, cameras for harsh conditions
 - Data and AI applications for autonomous operations in restricted environments
 - New mobility services and interplay with traffic management (C-ITS)
- New generation (electric) vehicles
 - Automotive software applications and platforms
 - Non-road mobile machines, heavy duty vehicles, micromobility vehicles, drones, electric aircrafts subsystems
- Finland as an experimentation based participatory development environment (living labs) for smart mobility services

Success calls for collaboration

- Collaboration in Scandinavia and Europe ITS Finland plays a key role
- Collaboration to utilize the EU and Business Finland funding instruments, e.g. RRF –
 VTT willing to play key role
- Attracting foreign companies and investments real service environment Living Labs, sovereign data sharing practises and functioning PPPP-models play an important role
- Combination of experimental research, scientific research and digital modelling and simulation helps to understand phenomena and to integrate successful systemic solutions. VTT investing 18 M€ into Transport Clean Energy Piloting Centre in Bioruukki, Espoo.
- Link between transport and other domains (energy system, built environment, tourism etc.) is important for innovations
- Cities and their innovative investments form an important development platform for innovative smart & sustainable solutions

Finland is the Living Lab for world class digi-green mobility solutions

bey^Ond the obvious